Math, asked by TbiaSupreme, 1 year ago

sin⁻¹(cos(sin⁻¹x))+ cos⁻¹(sin(cos⁻¹x)) is.......,Select Proper option from the given options.
(a) 0
(b) π/4
(c) π/2
(d) 3π/4

Answers

Answered by hukam0685
2
Dear Student,

Answer: π/2 ( option c)

Solution:

1) convert sin⁻¹x to cos⁻¹x, so that cos cancels cos⁻¹x

2) In second half convert cos⁻¹x into sin⁻¹x ,so that sin cancels sin⁻¹x

3) apply formula sin⁻¹x+cos⁻¹x =π/2

 {sin}^{ - 1} ( \cos( {sin}^{ - 1} x)  + {cos}^{ - 1} ( \sin({cos}^{ - 1} x) \\ {sin}^{ - 1} ( \cos({sin}^{ - 1} x) =  {sin}^{ - 1} (cos( {cos}^{ - 1}  \sqrt{1 -  {x}^{2} } ) \\  \\  =  {sin}^{ - 1}  \sqrt{1 -  {x}^{2} }  \\  \\ {cos}^{ - 1} ( \sin( {cos}^{ - 1} x) \\  = {cos}^{ - 1} (sin( {sin}^{ - 1}  \sqrt{1 -  {x}^{2} } ) \\  \\  =  {cos}^{ - 1}  \sqrt{1 -  {x}^{2} }  \\  \\ {sin}^{ - 1} ( \cos({sin}^{ - 1} x)  + {cos}^{ - 1} ( \sin( {cos}^{ - 1} x)  \\  \\ = {sin}^{ - 1}  \sqrt{1 -  {x}^{2} } + {cos}^{ - 1}  \sqrt{1 -  {x}^{2} } \\
since sin⁻¹x+cos⁻¹x =π/2

So,
{sin}^{ - 1}  \sqrt{1 -  {x}^{2} } + {cos}^{ - 1}  \sqrt{1 -  {x}^{2} }  =  \frac{\pi}{2}

So,the answer is π/2

Hope it helps you
Answered by abhi178
1
we have to find the value of sin^-1(cos(sin^-1x)) + cos^-1(sin(cos^-1x)) .........(1)

Let sin^-1x = A
sinA =x => cosA = √(1 - x^2)
cos^-1(√(1 - x^2)) = A
so, sin^-1(cos(cos^-1√(1-x^2))= sin^-1(√(1-x^2).....(2)

similarly, cos^-1x = B
cosB = x => sinB = √(1 - x^2)
sin^-1√(1 - x^2) = B
so, cos^-1(sin(sin^-1√(1-x^2)) = cos^-1√(1-x^2)......(3)

put equations (2) and (3), in equation (1)
sin^-1(cos(sin^-1x)) + cos^-1(sin(cos^-1x))= sin^-1{√(1 - x^2)} + cos^-1{√(1 - x^2)}

we know, sin^-1z + cos^-1z = π/2 , where |z| ≤ 1

so, sin^-1{√(1 - x^2)} + cos^-1{√(1 - x^2)} = π/2
because √(1 - x^2) ≤ 1

hence, option(c) is correct

Similar questions