Math, asked by TbiaSupreme, 1 year ago

cot⁻¹(√1-sinx+√1+sinx/√1-sinx-√1+sinx)=...........(0 < x < π/2)Select Proper option from the given options.
(a) x/2
(b) π/2 - 2x
(c) 2π-x
(d) π- x/2

Answers

Answered by hukam0685
1
Dear Student,

Answer: Option D ( π - x/2)

Solution:

cot⁻¹(√1-sinx+√1+sinx/√1-sinx-√1+sinx)

To solve this

First rationalise the denominator

 {cot}^{ - 1} (( \frac{ \sqrt{1  -   \sin(x) } +  \sqrt{1 +  \sin(x) }  }{ \sqrt{1 -  \sin(x)  } -  \sqrt{1 +  \sin(x) }  } ) \times ( \frac{ \sqrt{1  -   \sin(x) } +  \sqrt{1 +  \sin(x) }  }{ \sqrt{1 -  \sin(x)  }  +   \sqrt{1 +  \sin(x) }  } )) \\  \\  = {cot}^{ - 1}  \frac{ ({ \sqrt{1 -  \sin(x)  } +  \sqrt{1 +  \sin(x) }  })^{2} }{1 -  \sin(x)  - 1 -  \sin(x) }  \\  \\  =  {cot}^{ - 1}  (\frac{1 -  \sin(x)  + 1 +  \sin(x) + 2 \sqrt{1 -  {sin}^{2} x}  }{ - 2 \sin(x) }  )\\  \\  =  { \cot}^{ - 1}  (\frac{2 + 2 \cos(x) }{ - 2 \sin(x) } ) \\   =  {cot}^{ - 1} (\frac{1 +  \cos(x) }{ -  \sin(x) } ) \ \\   =  {cot}^{ - 1} ( \frac{2 {cos}^{2}  \frac{x}{2} }{ - 2 \sin( \frac{x}{2} )  \cos( \frac{x}{2} ) } ) \\  \\  =  {cot}^{ - 1} ( -  \cot( \frac{x}{2} )  \\  \\  = \pi - {cot}^{ - 1} (   \cot( \frac{x}{2} )  \\  \\  = \pi -  \frac{x}{2}

Hope it helps you
Answered by sandy1816
1

{cot}^{ - 1} ( \frac{ \sqrt{1 + sinx} +  \sqrt{1 - sinx}  }{ \sqrt{1 + sinx} -  \sqrt{ 1 - sinx}  } ) \\  \\  =  {cot}^{ - 1} ( \frac{ \sqrt{( {cos \frac{x}{2} + sin \frac{x}{2}  })^{2} } +  \sqrt{( {cos \frac{x}{2} - sin \frac{x}{2}  })^{2} }  }{ \sqrt{( {cos \frac{x}{2}  + sin \frac{x}{2}  })^{2} }  -  \sqrt{( {cos \frac{x}{2}  - sin \frac{x}{2} })^{2}  }  } ) \\  \\  =  {cot}^{ - 1} ( \frac{cos \frac{x}{2}  + sin \frac{x}{2}  + cos \frac{x}{2}  - sin \frac{x}{2} }{cos \frac{x}{2}  + sin \frac{x}{2}  - cos \frac{x}{2}  + sin \frac{x}{2} } ) \\  \\  =  {cot}^{ - 1} ( \frac{2cos \frac{x}{2} }{2sin \frac{x}{2} } ) \\  \\  =  {cot}^{ - 1} cot \frac{x}{2}  \\  \\  =  \frac{x}{2}

Similar questions