Math, asked by Anubhavsingh5799, 10 months ago

If Cos θ = 35/37 , then what is the value of Cot θ?

A) 12/35 B) 35/12 C) 37/12 D) 12/37

Answers

Answered by aliyasubeer
0

Answer:

Answer is option B. Cotθ= 35/12

Step-by-step explanation:

GIVEN:

  • Cosθ=35/37
  • Using trigonometric identities,

                                    1. \frac{Sin\theta}{Cos\theta} = Tan\theta\\\\2. $ tanx^{-1}\theta=cot\theta\\ \\3. $ cot\theta=\frac{Cos\theta}{Sin\theta}

                                    4. $ Sin^{2}\theta+ Cos^{2} \theta=1

  • &\sin ^{2} \theta=1-\cos ^{2} \theta

                 =1-(35 / 37)^{2}

                 =144 / 1369 \\

         \sin \theta=\sqrt{ \frac{144}{1369} }=12 / 37 \\

Therefore,

\cot \theta=\cos \theta / \sin \theta

        =\frac{35/37}{12/37} \\=\frac{35}{12}

Answered by sourasghotekar123
0

Answer:

COTθ =\frac{35}{12}

Step-by-step explanation:

TO FIND: COTθ =?

GIVEN : COSθ=\frac{35}{37}

FROM Trignometry identites

   SIN^{2}θ +COS^{2}θ=1

   SIN^{2}θ=1-COS^{2}θ

  SIN^{2}θ=1-(\frac{35}{37})^{2}

   SIN^{2}θ=\frac{144}{1369}

   SINθ=\sqrt{\frac{144}{1369} }

  SINθ=\frac{12}{37}

COTθ=COS θ / SINθ

       =   \frac{\frac{35}{37} }{\frac{12}{37} }

  COTθ=\frac{35}{12}

The project  code is #SPJ2

Similar questions