If cos A =1/2 and sin B =1/√2 , find the value of tan A - tan B /1 + tanAtanB
Answers
Answered by
10
the final answers is 1
Attachments:
Answered by
13
HEY FRIEND
HERE IS YOUR ANSWER
GIVEN :
_____
cosA=1/2
cos60°=1/2
So, A=60°
sinB=1/√2
sin45°=1/√2
So, B=45°
===============================
WE GET
A=60°
B=45°
===============================
=(tanA-tanB) / (1+tanAtanB)
=(tan60°-tan45°)/(1+tan60°tan45°)
[PUTTING tan60°=√3 and tan45°=1]
=(√3-1) / (1+√3×1)
=(√3-1) / (√3+1)
WE CAN ALSO RATIONALISE IT
=(√3-1)×(√3-1) / (√3+1)×(√3-1)
[USING (a-b)²=a²+b²-2ab and (a+b)(a-b)=a²-b²]
=[(√3)²+(1)²-2×1×√3] / (√3)²-(1)²
=(3+1+2√3) / (3-1)
=(4+2√3)/2
=2(2+√3)/2
=2+√3
HOPE THIS HELPS YOU ☺
HERE IS YOUR ANSWER
GIVEN :
_____
cosA=1/2
cos60°=1/2
So, A=60°
sinB=1/√2
sin45°=1/√2
So, B=45°
===============================
WE GET
A=60°
B=45°
===============================
=(tanA-tanB) / (1+tanAtanB)
=(tan60°-tan45°)/(1+tan60°tan45°)
[PUTTING tan60°=√3 and tan45°=1]
=(√3-1) / (1+√3×1)
=(√3-1) / (√3+1)
WE CAN ALSO RATIONALISE IT
=(√3-1)×(√3-1) / (√3+1)×(√3-1)
[USING (a-b)²=a²+b²-2ab and (a+b)(a-b)=a²-b²]
=[(√3)²+(1)²-2×1×√3] / (√3)²-(1)²
=(3+1+2√3) / (3-1)
=(4+2√3)/2
=2(2+√3)/2
=2+√3
HOPE THIS HELPS YOU ☺
Similar questions