If cos a = 3/5 & cos b = 5/13 then prove that cos square (a+b/2) = 16/65
Answers
Answer:
given, cos α = \frac{3}{5}
5
3
and cos β = \frac{5}{13}
13
5
and α, β are acute angles.
cosα = 3/5 = b/h
so, b = 3 and h = 5
then, p = √(h² - b²) = √(5² - 3²) = 4
sinα = 4/5
cosβ = 5/13 = b/h
so, b = 5 and h = 13
then, p = √(13² - 5²) = 12
sinβ = 12/13
(a) sin^{2}(\frac{\alpha - \beta}{2}) = \frac{1}{65}sin
2
(
2
α−β
)=
65
1
we know , sin²x = (1 - cos2x)/2
so, sin^2\frac{(\alpha-\beta)}{2}=\frac{1-cos(\alpha-\beta)}{2}sin
2
2
(α−β)
=
2
1−cos(α−β)
= \frac{1}{2}[1-cos\alpha cos\beta - sin\alpha sin\beta]
2
1
[1−cosαcosβ−sinαsinβ]
= 1/2 [ 1 - 3/5 × 5/13 - 4/5 × 12/13 ]
= 1/2 [ 1 - 15/65 - 48/65 ]
= 1/2 [ 1 - 63/65 ]
= 1/65 = RHS
(b) cos^{2}(\frac{\alpha + \beta}{2}) = \frac{16}{65}cos
2
(
2
α+β
)=
65
16
we know , cos²x = (1 + cos2x)/2
now, LHS = cos^{2}\left(\frac{\alpha + \beta}{2}\right)=\frac{1+cos(\alpha+\beta)}{2}cos
2
(
2
α+β
)=
2
1+cos(α+β)
= \frac{1+cos\alpha cos\beta - sin\alpha sin\beta}{2}
2
1+cosαcosβ−sinαsinβ
= 1/2 × [ 1 + 3/5 × 5/13 - 4/5 × 12/13 ]
= 1/2 × [ 1 + 15/65 - 48/65 ]
= 1/2 × [ 1 - 33/65 ]
= 1/2 × [ 32/65 ]
= 16/65 = RHS
Step-by-step explanation: