Math, asked by gunwant85, 5 months ago

if cos a= 5/13 find sin^2a+1/sec^2a

Answers

Answered by Anonymous
3

Solution:-

Given

  \rm \to \cos a =  \dfrac{5}{13}

To find

 \rm \to \:  \sin ^{2} a +  \dfrac{1}{ \sec ^{2} a}

 \rm \to \:  \sin^{2} a +  \dfrac{1}{ \dfrac{1}{ \cos ^{2}a } }

 \rm \to \:  \sin^{2} a +  \cos ^{2} a

Now Take

\rm \to \cos a =  \dfrac{5}{13}  =  \dfrac{b}{h}

Using Pythagoras theorem

 \rm \to \: b = 5,h = 13 \: and \: p = x

 \rm \to \:  {h}^{2}  = {p}^{2}  +  {b}^{2}

 \rm \to {13}^{2}  =  {x}^{2}  +  {5}^{2}

 \rm \to \: 169 - 25 =  {x}^{2}

 \rm \to \: x =  \sqrt{144}  = 12

\rm \to \: b = 5,h = 13 \: and \: p = 12

Put the value on equation

 \rm \to \:  \sin^{2} a +  \cos ^{2} a

 \rm \to \:  \bigg( \dfrac{12}{13} \bigg)^{2}   +  \bigg( \dfrac{5}{13}  \bigg)^{2}

 \rm \to \:  \dfrac{144}{169}  +  \dfrac{25}{169}

 \rm \to \:  \dfrac{169}{169}  = 1

Answer is 1

Similar questions