Math, asked by allu37, 1 year ago

If Cos A=7/25 find the value of Sin A and Tan A

Answers

Answered by Parthasarathirout
1
Hope it helps........
Attachments:
Answered by wifilethbridge
5

Sin A = \frac{Perpendicular}{Hypotenuse} =\frac{24}{25}

Tan A = \frac{Perpendicular}{Base}=\frac{24}{7}

Step-by-step explanation:

Cos \theta =\frac{base}{Hypotenuse}

We are given that Cos A = \frac{7}{25}

On comparing

Base = 7

Hypotenuse = 25

To find perpendicular

Hypotenuse^2 = perpendicular^2 +base^2

25^2= perpendicular^2 +7^2

25^2-7^2=perpendicular^2

\sqrt{25^2-7^2}=Perpendicular

24 = Perpendicular

Sin A = \frac{Perpendicular}{Hypotenuse} =\frac{24}{25}

Tan A = \frac{Perpendicular}{Base}=\frac{24}{7}

#Learn more:

If sin theta=7/25 find value of cos theta and tan theta

https://brainly.in/question/3803575

Similar questions