if cos A 9/2 then find value of (1) cos C tan A +sin C cos A (2) cos C tanA +tan C cos A
Answers
Answer:
can you give photo i can not understand
Step-by-step explanation:
If CosA=tanB, cosB=tanC cosC =tanA then the numerical value of sin A =?
Take your business to newer heights with Acer TravelMate P214.
A2A
cosA=tanB…(1)
cosB=tanC…(2)
cosC=tanA…(3)
We shall find the value of cosB and tanC in terms of sinA from equations (1) and (3) respectively and then substitute those values in equation (2) thus eliminating C and B and creating an equation in sinA
(1)
⟹tanB=cosA
⟹1−cos2B−−−−−−−−√cosB=cosA
⟹1−cos2Bcos2B=cos2A=1−sin2A
⟹cos2B=12−sin2A…(4)
(3)
⟹cosC=tanA
Now tan2C=1−cos2Ccos2C
⟹tan2C=1−tan2Atan2A
⟹
cos C=tan A
so tan C=sqrt(1-tan ^2 A)/tan A
cos B=tan C=sqrt(1-tan ^2 A)/tan A
so tan B=sqrt((2×tan ^2 A-1)/(1-tan ^2 A))
But cos A=tan B
cos A=sqrt(2×tan ^2 A-1)/(1-tan ^2 A))
cos ^2 A=(2×tan ^2 A-1)/(1-tan ^2 A)
1/sec ^2 A=(2×tan ^2 A-1)/(1-tan ^2 A)
1/(1+tan ^2 A)=(2×tan ^2 A-1)/(1-tan ^2 A)
tan ^4 A +tan ^2 A -1=0
tan ^2 A=(-1+√5)/2
cot ^2 A=2/(√5 -1)
cosec ^2 A -1 =2/(√5 -1)
cosec ^2 A=(1+√5)/(√5 -1)
sin ^2 A=(√5–1)/(√5+1)=(√5–1)^2/(√5+1)(√5–1)
sin ^2 A=((√5–1)^2)/4
sin A=(√5–1)/2.