If cos (a+b) =0 and sin (a-b) 0=3,then find the value of a and b where a and b are acute angles
Answers
Answered by
5
If cos (a+b) =0 and sin (a-b) = 0,then find the value of a and b where a and b are acute angles. [ correct question]
Given:
cos (a+b) =0 and sin (a-b) = 0
To find:
The value of a and b
Solution:
As per the given data of the question:
cos (a+b) =0 and sin (a-b) = 0
so,
cos (a+b) = cos 90° and sin (a-b) = sin 0°
As per the rule of the trigonometric value
cos 90° = 0 and sin 0° = 0
So
a+b = 90°
a-b = 0°
adding the equation we get the values as:
a = 45° and b = 45°
The value of a and b is 45°
Answered by
1
Answer:
A=60°. ,B=30°
A=60°. ,B=30°Step-by-step explanation:
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30a+b=90. ,a-b=30
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30a+b=90. ,a-b=30 ,a=30+b ....(i)
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30a+b=90. ,a-b=30 ,a=30+b ....(i)30+b+b=90. from (i)
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30a+b=90. ,a-b=30 ,a=30+b ....(i)30+b+b=90. from (i) 2b=60
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30a+b=90. ,a-b=30 ,a=30+b ....(i)30+b+b=90. from (i) 2b=60b=30
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30a+b=90. ,a-b=30 ,a=30+b ....(i)30+b+b=90. from (i) 2b=60b=30Putting the value of B in (i), we get
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30a+b=90. ,a-b=30 ,a=30+b ....(i)30+b+b=90. from (i) 2b=60b=30Putting the value of B in (i), we get⇒ A = 30° + 30° = 60°
A=60°. ,B=30°Step-by-step explanation:cos (A+B)=0. =cos 90. ,sin(a-b)=1/2=sin30a+b=90. ,a-b=30 ,a=30+b ....(i)30+b+b=90. from (i) 2b=60b=30Putting the value of B in (i), we get⇒ A = 30° + 30° = 60°∴ A = 60°, B = 30°
Similar questions