If cos A +cos2 A = 1 then sin2 A + sin 4 A is equal to
Answers
Answered by
10
Answer :-
The value of Sin²A + Sin⁴A is 1 when Cos A + Cos²A = 1.
Step-by-step explanation :-
Given :
Cos A + Cos²A = 1
To find :
Sin²A + Sin⁴A
Solution :
∅ Cos A + Cos²A = 1 can be written as 1 - Cos²A = Cos A
∅ Sin²A + Sin⁴A can be written as Sin²A + (Sin²A Sin²A)
⇒ Sin²A + (Sin²A Sin²A)
∅ Sin²A = 1 - Cos²A
⇒ Sin²A + (1 - Cos²A 1 - Cos²A)
∅ 1 - Cos²A = Cos A
⇒ Sin²A + Cos A Cos A
∅ Cos A Cos A = Cos²A
⇒ Sin²A + Cos²A
∅ Sin²A + Cos²A = 1
⇒ 1
∴ The value of Sin²A + Sin⁴A is 1.
Answered by
2
Step-by-step explanation:
ANSWER ✍️
______________
- cosA+cos 2A=1
- cosA=1−cos 2 A
- cosA=sin 2A
Hence
- sin 4A+sin 2A
- cos 2A+cosA
- =1
Hope this helps you ☺️
Similar questions