Math, asked by akash2857, 10 months ago

if Cos A equal to 3 / 5, then find the value of Sin A - Cos A / 2 tan A​

Answers

Answered by Anonymous
5

Given,

 \cos(A \: )  =  \frac{3}{5}

To find out,

 \frac{ \sin(A \: ) \:  -  \cos(A \: ) }{2 \:  \tan(A) }

Solution:

We know that,

 \cos(A \: )  =  \frac{adjacent \: side \: to \:A \:  }{hypotenuse}

In a right angle triangle,

<A = Ѳ

<B = 90°

<C = 90°- Ѳ

AB = Adjacent side to <A = 3

AC = hypotenuse = 5

BC = Opposite side to <A = ?

By pythagoras theorem,

 {AC}^{2}  =  {AB}^{2}  +  {BC}^{2}

 {5}^{2}  =  {3}^{2}  +  {BC}^{2}

25 = 9 +  {BC}^{2}

25 - 9 =  {BC}^{2}

16 =  {BC}^{2}

 \sqrt{16}  = BC

4 = BC

Therefore the value of BC is 4.

Now,

 \sin(A)  =  \frac{opposite \: side \: to \: A}{hypotenuse}  =  \frac{4}{5}

 \tan(A)  =  \frac{opposite \: side \: to \:A }{adjecent \: side \: to \:A }  =  \frac{4}{3}

Substitute these values in

 \frac{ \sin(A \: ) \:  -  \cos(A \: ) }{2 \:  \tan(A) }

 \frac{ \frac{4}{5} -  \frac{3}{5}  }{2 \times  \frac{4}{3} }

 \frac{ \frac{4 - 3}{5} }{ \frac{8}{3} }

 \frac{ \frac{1}{5} }{ \frac{8}{3} }

 \frac{1}{5}  \times  \frac{3}{8}

 \frac{3}{40}

Therefore the value is 3/40.

Attachments:
Similar questions