Math, asked by shikhusingh05, 5 months ago

If cos A + Sin A =√2 Cos A , Prove that cos A - Sin A = √2 Sin A

Answers

Answered by parasramrai
0

cos A+sin A=\sqrt{2} cos A

To prove: cos A-sin A=\sqrt{2} sin A

ANSWER: cos A+sin A=\sqrt{2} cos A      

                 squaring both sides

                 (cos A+ sin A)^{2} =( \sqrt{2} cos A)^{2}

                 cos^{2} A+sin^{2} A + 2 cos A. sin A = 2cos^{2} A

                2 cos A. sin A=2 cos^{2} A-(cos^{2} A+ sin^{2} A)

                2 cos A. sin A=cos^{2} A - sin^{2} A

                2 cos A. sin A= (cos A+sin A)(cos A- sin A)

                2 cos A. sin A= (\sqrt{2} cos A)(cos A- sin A)

                (cos A- sin A)=2 cos A. sin A/\sqrt{2} cos A

                cos A- sin A=√2 Sin A

                      hence proved

hope it helped u its an easy method to prove

remember not to put value of cos^{2} A+sin^{2} A=1 in second step its an important step....

have a nice day..keep practicing and ask questions:):):):):):):):)

                   

                 

                 

                   

                 

Similar questions