if cos A + sin A =2 cos A , then prove that cos A - sin A = 2 sin A
Answers
Answered by
1
the problem seems to be given wrongly.
cos A + SIn A = 2 Cos A => Sin A = Cos A
=> Tan A = 1 => A = π/4, 5π/4
Then Cos A - Sin A = 0 and Not 2 Sin A..
cos A + SIn A = 2 Cos A => Sin A = Cos A
=> Tan A = 1 => A = π/4, 5π/4
Then Cos A - Sin A = 0 and Not 2 Sin A..
Answered by
1
cos A + sin A =2 cos A
sinA=2cosA-cosA
sinA=cosA-----------------------------------1
cos A - sin A = 2 sin APutting the value of sinA in the equation
cosA-cosA= 0
sinA=2cosA-cosA
sinA=cosA-----------------------------------1
cos A - sin A = 2 sin APutting the value of sinA in the equation
cosA-cosA= 0
Similar questions