If cos A = and < A < 2π, then find the value of cot .
Answers
Answered by
5
cosA = 7/25 where 3π/2 < A < 2π
we know , cos2x = (1 - tan²x)/(1 + tan²x)
so, cosA = {1 - tan²(A/2)}/{1 + tan²(A/2)}
7/25 = {1 - 1/cot²(A/2)}/{1 +1/cot²(A/2)}
7/25 = {cot²(A/2) - 1}/{cot²(A/2) + 1}
7{cot²(A/2) + 1} = 25{cot²(A/2) - 1}
7cot²(A/2) + 7 = 25cot²(A/2) - 25
7 + 25 = 25cot²(A/2) - 7cot²(A/2)
32 = 18cot²(A/2)
cot²(A/2) = 16/9
cot(A/2) = ±4/3
but 3π/2 < A < 2π or, 3π/4 < (A/2) < π ,
e.g., (A/2) lies in 2nd quadrant .
so, cot(A/2) = -4/3
we know , cos2x = (1 - tan²x)/(1 + tan²x)
so, cosA = {1 - tan²(A/2)}/{1 + tan²(A/2)}
7/25 = {1 - 1/cot²(A/2)}/{1 +1/cot²(A/2)}
7/25 = {cot²(A/2) - 1}/{cot²(A/2) + 1}
7{cot²(A/2) + 1} = 25{cot²(A/2) - 1}
7cot²(A/2) + 7 = 25cot²(A/2) - 25
7 + 25 = 25cot²(A/2) - 7cot²(A/2)
32 = 18cot²(A/2)
cot²(A/2) = 16/9
cot(A/2) = ±4/3
but 3π/2 < A < 2π or, 3π/4 < (A/2) < π ,
e.g., (A/2) lies in 2nd quadrant .
so, cot(A/2) = -4/3
Answered by
2
HELLO DEAR,
GIVEN:-
cosA = 7/25
we know:- cos2x = (1 - tan²x)/(1 + tan²x)
so, cosA = {1 - tan²(A/2)}/{1 + tan²(A/2)}
7/25 = {1 - 1/cot²(A/2)}/{1 +1/cot²(A/2)}
7/25 = {cot²(A/2) - 1}/{cot²(A/2) + 1}
7{cot²(A/2) + 1} = 25{cot²(A/2) - 1}
7cot²(A/2) + 7 = 25cot²(A/2) - 25
7 + 25 = 25cot²(A/2) - 7cot²(A/2)
32 = 18cot²(A/2)
cot²(A/2) = 16/9
cot(A/2) = ±4/3
[but 3π/2 < A < 2π or, 3π/4 < (A/2) < π ,]
so, cot(A/2) = -4/3
I HOPE IT'S HELP YOU DEAR,
THANKS
GIVEN:-
cosA = 7/25
we know:- cos2x = (1 - tan²x)/(1 + tan²x)
so, cosA = {1 - tan²(A/2)}/{1 + tan²(A/2)}
7/25 = {1 - 1/cot²(A/2)}/{1 +1/cot²(A/2)}
7/25 = {cot²(A/2) - 1}/{cot²(A/2) + 1}
7{cot²(A/2) + 1} = 25{cot²(A/2) - 1}
7cot²(A/2) + 7 = 25cot²(A/2) - 25
7 + 25 = 25cot²(A/2) - 7cot²(A/2)
32 = 18cot²(A/2)
cot²(A/2) = 16/9
cot(A/2) = ±4/3
[but 3π/2 < A < 2π or, 3π/4 < (A/2) < π ,]
so, cot(A/2) = -4/3
I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions