Math, asked by Nitin7524, 1 year ago

Simplify \frac{3 cos \theta + cos 3\theta}{3 sin \theta - sin 3\theta}

Answers

Answered by abhi178
3
we know,
cos3x = 4cos³x - 3cosx

sin3x = 3sinx - 4sin³x

now,
cos3\theta=4cos^3\theta-3cos\theta\\\\sin3\theta=3sin\theta-4sin^3\theta

\textbf{so,}\frac{3cos\theta+cos3\theta}{3sin\theta-sin3\theta}\\\\=\frac{3cos\theta+4cos^3\theta-3cos\theta}{3sin\theta-3sin\theta+4sin^3\theta}

= \frac{cos^3\theta}{sin^3\theta}

= cot^3\theta
Answered by rohitkumargupta
1
HELLO DEAR,



we know:-
cos3θ = 4cos³θ - 3cosθ

sin3θ = 3sinθ - 4sin³θ


now, (3cosθ + cos3θ)/(3sinθ - sin3θ)

=> (3cosθ + 4cos³θ - 3cosθ)/(3sinθ - 3sinθ + 4sin³θ)

=> 4cos³θ/4sin³θ

=> cot³θ


I HOPE IT'S HELP YOU DEAR,
THANKS
Similar questions