If cos (alpha+beta) = 4 / 5, sin (alpha+beta) = 5 /13 and (alpha) and (beta) lies between 0 and pi / 4, show that tan 2(alpha) = 56 / 33.
Answers
Answered by
166
Wehave,
cos(α+β)=
4
5
⇒sin(α+β)=
1−(
4
5
)2
−
−
−
−
−
−
−
−
√
=
3
5
And
sin(α−β)=
5
13
⇒cos(α−β)=
1−(
5
13
)2
−
−
−
−
−
−
−
−
√
=
12
13
Now,
sin2α=sin[(α+β)+(α−β)]
=sin(α+β)cos(α−β)
+sin(α−β)cos(α+β)
=
3
5
×
12
13
+
5
13
×
4
5
=
36
65
+
20
65
=
56
65
∴cos2α=
1−sin22α
−
−
−
−
−
−
−
−
−
√
=
1−(
56
65
)2
−
−
−
−
−
−
−
−
√
=
1−
3136
4225
−
−
−
−
−
−
−
√
=
1089
4225
−
−
−
−
√
=
33
65
Hence,tan2α=
sin2α
cos2α
=
56
65
33
65
=
56
33
kvnmurty:
please use the equation editor available to you. When you are writing the answer, you find a button/box circular and labeled with a "Pie" symbol...
Answered by
594
find sin(2 alpha) and then cos(2 alpha)..
Similar questions