CBSE BOARD XII, asked by Heet1256, 1 year ago

if (cos alpha+cos beta)^2+(sin alpha+sin beta)^2 = gamma cos^2(alpha - beta/2) find gamma

Answers

Answered by bedabrata85
1

SOLUTION

WE ARE NEEDED TO FIND GAMMA

SO LET US CONSIDER LHS FIRST,

LHS

 {( \cos( \alpha ) +   \cos( \beta )  )}^{2} +  {( \sin( \alpha ) +  \sin( \beta )  )}^{2}   \\  =  {(2 \cos( \frac{ \alpha  +  \beta }{2} ). \cos(  \frac{ \alpha  -  \beta }{2}  ) ) }^{2 }  +  {(2 \cos( \frac{ \alpha  +  \beta }{2} ) . \sin( \frac{ \alpha  -  \beta }{2} )) }^{2}  \\  = 2 \cos( \frac{ \alpha  +  \beta }{2} )^{2} ( ({ \cos( \frac{ \alpha  -  \beta }{2} )  ) }^{2}  +  { \sin( \frac{ \alpha  -  \beta }{2} ) }^{2} ) \\  = </u></strong><strong><u>4</u></strong><strong><u> \cos( \frac{ \alpha  +  \beta }{2} )

RHS

 \gamma  { \cos^{2} ( \frac{ \alpha  -  \beta }{2} ) }  = </u></strong><strong><u>4</u></strong><strong><u> { \cos}^{2}  (\frac{ \alpha  +  \beta }{2} ) \\  =  &gt;  \gamma ( \frac{ \alpha  -  \beta }{2} ) = </u></strong><strong><u>4</u></strong><strong><u>( \frac{ \alpha  +  \beta }{2} ) \\  =  &gt;  \gamma  = </u></strong><strong><u>4</u></strong><strong><u>(</u></strong><strong><u>\</u></strong><strong><u>frac</u></strong><strong><u>{</u></strong><strong><u>\alpha  +  \beta</u></strong><strong><u>}</u></strong><strong><u>{</u></strong><strong><u>\</u></strong><strong><u>alpha-</u></strong><strong><u>\</u></strong><strong><u>beta</u></strong><strong><u>}</u></strong><strong><u> </u></strong><strong><u>)</u></strong><strong><u> \\

Similar questions