Math, asked by achita5242, 7 months ago

if cos B = 1/2{a+1/a},prove that:[i]2cos2B ={ a^2+1/a^2 } [ii]2cos4B ={ a^4+1/a^4 }

Answers

Answered by Anonymous
4

EXPLANATION :

 \sf \cos \: B =  \frac{1}{2} (a +  \frac{1}{a} )

 \sf \implies \:  { \cos}^{2} B =  \frac{1}{4}  {(a +  \frac{1}{a} )}^{2}  \underline{ \:  \:  \:   \:  \:  \: \:  \: }(1)

 \sf \implies \: 1 -  { \sin}^{2} B =  \frac{1}{4}  {(a +  \frac{1}{a} )}^{2}

 \sf \implies  { \sin}^{2} B = 1 -  \frac{1}{4}  {(a +  \frac{1}{a} )}^{2}  \underline{ \:  \:  \:  \:  \:  \:  \:  \:  \: }(2)

SUBTRACTING EQN 1 AND 2

 \sf  {\boxed {\sf { \cos \: 2B =  { \cos}^{2} B -   { \sin}^{2} B}}}

1ST PART

APPLYING THIS FORMULA

 \sf  {2 \cos \: 2B =  {2( \cos}^{2} B -   { \sin}^{2} B)}

 \implies \sf  {2 \cos \: 2B =  {2( \frac{1}{4} {(a +  \frac{1}{a}) }^{2}   -   1  +  \frac{1}{4} {(a +  \frac{1}{a}) }^{2}  )}} \\

 \implies \sf   {\boxed {\sf {2 \cos \: 2B =   {a}^{2}  +  \frac{1}{ {a}^{2} } }}} \:  \:  \:  \:  proved \\

2ND PART

Same process

Similar questions