if cos inverse (y/b) = log (x/n)" prove that
x²(y base n+2) + (2n + 1)x(y base n+1) + 2n² (y base n) = 0
Answers
i think it helps u.... thank you
Answer:
The result is proved.
Step-by-step explanation:
We need to prove that x²yₙ₊₂ + (2n - 1) xyₙ₊₁ + 2n²yₙ = 0
Given that cos⁻¹ ( ) = log ( )ⁿ
=> = cos [log ( )ⁿ ]
=> y = b cos [log ( )ⁿ ]
We know that log mⁿ = n log m
=> y = b cos [ n log( )]
First of all, we will differentiate the above equation with respect to x
=> = b *(-)sin [ n log( )] * n * *
=> y₁ = -b sin [ n log( )] *
=> xy₁ = - nb sin [ n log( )]
We differentiate again, with respect to x.
=> xy₂ + y₁ = -nb [ cos [ n log( )] * n * * ]
=> xy₂ + y₁ = -nb [ cos [ n log( )] *
=> x²y₂ + xy₁ = -n²b [ cos [ n log( )]
As, y = b cos [ n log( )],
Therefore, on substituting the value, we get
x²y₂ + x y₁ = -n²y
Now, according to Leibnitz's Theorem,
Dⁿ(uv) = (Dⁿu)v + ⁿC₁ Dⁿ⁻¹u . Dv + ⁿC₂ Dⁿ⁻²u . D²v + .... + u.Dⁿv
Therefore, differentiating the given equation 'n' times, we get,
Dⁿ(x²y₂) + Dⁿ(x y₁) = Dⁿ(-n²y)
Applying Leibnitz's Theorem,
=>Dⁿ(y₂) x² + ⁿC₁ Dⁿ⁻¹(y₂).D(x²) + ⁿC₂ Dⁿ⁻²(y₂) . D²(x²) +
Dⁿ(y₁) x + ⁿC₁ Dⁿ⁻¹(y₁).D(x) = Dⁿ(y) (-n²)
=> yₙ₊₂ . x² + n. yₙ₋₁₊₂.2x + . yₙ₋₂₊₂.2 + yₙ₊₁ . x + n. yₙ₋₁₊₁.1 = -n².yₙ
=> yₙ₊₂ . x² + n. yₙ₊₁.2x + n(n-1) yₙ. + yₙ₊₁ . x + n. yₙ = -n².yₙ
=> yₙ₊₂ . x² + n. yₙ₊₁.2x + n² yₙ. - n yₙ. + yₙ₊₁ . x + n. yₙ = -n².yₙ
=> yₙ₊₂ . x² + n. yₙ₊₁.2x + yₙ₊₁ . x + n² yₙ + n².yₙ = 0
=> x²yₙ₊₂ + xyₙ₊₁ (2n+1) + 2n² yₙ = 0
Which is the desired result.
Hence proved.