Math, asked by karpagamramanathan20, 10 months ago

If cosθ+sinθ=1,then prove that cosθ−sinθ=±1

Answers

Answered by BrainlyPopularman
4

GIVEN :

  \\ { \bold{ \cos( \theta)  +  \sin( \theta) = 1 }} \\

TO PROVE :

  \\ { \bold{ \cos( \theta)  -  \sin( \theta) =  \pm \: 1 }} \\

SOLUTION :

  \\ \implies { \bold{ \cos( \theta)  +  \sin( \theta) = 1 }} \\

• Square on both sides –

  \\ \implies { \bold{( \cos( \theta)  +  \sin( \theta))^{2}  = {(1)}^{2}  }} \\

  \\ \implies { \bold{ \cos^{2} ( \theta)  +  \sin^{2} ( \theta) + 2 \cos( \theta) \sin( \theta)   = 1  }} \\

  \\ \implies { \bold{ 1 + 2 \cos( \theta) \sin( \theta)   = 1    \:  \:  \:  \:  \:   [ \:  \because \: \cos^{2} ( \theta)  +  \sin^{2} ( \theta) = 1]}} \\

  \\ \implies { \bold{  2 \cos( \theta) \sin( \theta)   = 0}} \\

  \\ \implies { \bold{   \cos( \theta) \sin( \theta)   = 0 \:  \:  \:  \:  -  -  - eq.(1)}} \\

• Now Let's take L.H.S. –

  \\   \:  \: = \:  \:   { \bold{ \cos( \theta)  -  \sin( \theta)}} \\

• We should write this as –

  \\   \:  \: = \:  \:   { \bold{ \pm \sqrt{[ \cos( \theta)  -  \sin( \theta) ] ^{2} }}} \\

  \\   \:  \: = \:  \:   { \bold{ \pm \sqrt{\cos^{2} ( \theta)  +  \sin^{2} ( \theta)  -  2 \cos( \theta) \sin( \theta) }}} \\

• Using eq.(1) –

  \\   \:  \: = \:  \:   { \bold{ \pm \sqrt{\cos^{2} ( \theta)  +  \sin^{2} ( \theta)  -  2 (0)}}} \\

  \\   \:  \: = \:  \:   { \bold{ \pm \sqrt{\cos^{2} ( \theta)  +  \sin^{2} ( \theta) }}} \\

  \\   \:  \: = \:  \:   { \bold{ \pm \sqrt{1}}} \\

  \\   \:  \: = \:  \:   { \bold{ \pm \: 1}} \\

  \\   \:  \: = \:  \:   { \bold{ \: R.H.S.}} \\

  \\ \\   \:  \:  \:  \:  \:  \:  \: \:  \:   { \bold{ \underbrace {Hence \: \:   \: proved}}} \\

Similar questions