if cos ∅ - sin ∅ = √2 sin ∅, prove that cos ∅ + sin ∅
= √2 cos∅
No Spam.
Answers
☘Aɴsᴡᴇʀ☘
cos θ + sin θ = √2cos θ
cos θ + sin θ = √2cos θSquaring both side, we get
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θ
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θ
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θsin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θ
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θsin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θsin2θ + 2 × cosθ × sinθ = cos2θ
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θsin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θsin2θ + 2 × cosθ × sinθ = cos2θcos2θ – 2 × cosθ × sinθ = sin2θ
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θsin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θsin2θ + 2 × cosθ × sinθ = cos2θcos2θ – 2 × cosθ × sinθ = sin2θNow adding sin2θ both side, we get
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θsin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θsin2θ + 2 × cosθ × sinθ = cos2θcos2θ – 2 × cosθ × sinθ = sin2θNow adding sin2θ both side, we getcos2θ -2 × cosθ × sinθ + sin2θ = sin2θ + sin2θ
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θsin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θsin2θ + 2 × cosθ × sinθ = cos2θcos2θ – 2 × cosθ × sinθ = sin2θNow adding sin2θ both side, we getcos2θ -2 × cosθ × sinθ + sin2θ = sin2θ + sin2θcosθ–sinθ2 = 2sin2θ
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θsin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θsin2θ + 2 × cosθ × sinθ = cos2θcos2θ – 2 × cosθ × sinθ = sin2θNow adding sin2θ both side, we getcos2θ -2 × cosθ × sinθ + sin2θ = sin2θ + sin2θcosθ–sinθ2 = 2sin2θcos θ – sin θ = √2sinθ
cos θ + sin θ = √2cos θSquaring both side, we getcosθ+sinθ2 = 2cos2θcos2θ + sin2θ + 2 × cosθ × sinθ = 2cos2θsin2θ + 2 × cosθ × sinθ = 2cos2θ – cos2θsin2θ + 2 × cosθ × sinθ = cos2θcos2θ – 2 × cosθ × sinθ = sin2θNow adding sin2θ both side, we getcos2θ -2 × cosθ × sinθ + sin2θ = sin2θ + sin2θcosθ–sinθ2 = 2sin2θcos θ – sin θ = √2sinθ∴ cos θ – sin θ = √2sinθ
Answer:
hi Small prince .
# I am Div.
and you kesa ho