Math, asked by bhattshashank60, 9 months ago

volume of cylinder is 69300 cube and its height is 50 cm find the the curved surface area​

Answers

Answered by sethrollins13
42

Given :

  • Volume of Cylinder = 69300cm³.
  • Height of Cylinder = 50cm.

To Find :

  • Curved Surface Area of Cylinder.

Solution :

Firstly we will find Radius of Cylinder :

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cylinder=\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{69300=\dfrac{22}{7}\times{{r}^{2}}\times{50}}

\longmapsto\tt{69300\times{7}=1100{r}^{2}}

\longmapsto\tt{485100=1100{r}^{2}}

\longmapsto\tt{{r}^{2}=\cancel\dfrac{485100}{1100}}

\longmapsto\tt{r=\sqrt{441}}

\longmapsto\tt\bold{r=21cm}

So , The Radius of Cylinder is 21cm..

_______________________

\longmapsto\tt{Radius=21cm}

Using Formula :

\longmapsto\tt\boxed{C.S.A\:of\:Cylinder=2\pi{rh}}

Putting Values :

\longmapsto\tt{2\times\dfrac{22}{\cancel{7}}\times{\cancel{21}}\times{50}}

\longmapsto\tt{44\times{3}\times{50}}

\longmapsto\tt\bold{6600{cm}^{2}}

Therefore , The C.S.A of Cylinder is 6600cm²..

Answered by Anonymous
3

ANSWER✔

\large\underline\bold{GIVEN,}

\sf\dashrightarrow height\:of\:cylinder(h)=50cm

\sf\dashrightarrow volume\:of\:cylinder=69300cm^3

\large\underline\bold{TO\:FIND,}

\sf\dashrightarrow CURVED\:SURFACE\:AREA\:OF\:CYLINDER.

TAKING TWO CASES,

\sf\therefore IN\:CASE\:ONE\:,WE\:WILL\:FIND\:RADIUS\:OF\:A\:CYLINDER

\sf\therefore IN\:CASE\:TWO\:,WE\:WILL\:FIND\:CURVED\:SURFACE\:AREA\:OF\:CYLINDER.

FORMULA IN USE,

IN CASE 1,

\large{\boxed{\bf{ \star\:\: VOLUME\:OF\:CYLINDER=  \pi r^2h\:\: \star}}}

IN CASE 2,

\large{\boxed{\bf{ \star\:\: CURVED\:SURFACE\:AREA\:OF\:CYLINDER= 2\pi rh \:\: \star}}}

\large\underline\bold{SOLUTION,}

\large{\boxed{\bf{CASE:-1 }}}

\sf\therefore VOLUME\:OF\:CYLINDER=  \pi r^2h

\sf\implies \dfrac{22}{7} \times (r)^2 \times(50) =69300

\sf\implies r^2= \dfrac{69300 \times 7}{50 \times 22}

\sf\implies r^2= \dfrac{\cancel{69300} \times 7}{\cancel{50} \times 22}

\sf\implies r^2= \dfrac{\cancel{1386} \times 7}{\cancel{22} }

\sf\implies r^2= 63 \times 7

\sf\implies r^2= 441

\sf\implies r= \sqrt{441}

\sf\implies r= 21cm

\large{\boxed{\bf{ \star\:\: radius= 21cm\:\: \star}}}

\large{\boxed{\bf{CASE:-2 }}}

\sf\therefore CURVED\:SURFACE\:AREA\:OF\:CYLINDER= 2\pi rh

\sf\implies 2\times \dfrac{22}{\cancel{7}} \times \cancel{(21)} \times 50

\sf\implies  2 \times 22\times 3 \times 50

\sf\implies 6\times 22\times 50

\sf\implies 132 \times 50

\sf\implies 6600cm^2

\large{\boxed{\bf{ \star\:\: curved\:surface\:area\:of\:cylinder= 6600cm^2 \:\: \star}}}

\large\underline\bold{ CURVED \:SURFACE\:AREA\:OF\:CYLINDER\:IS\:6600cm^2}

_________________

Similar questions