If cosФ+sinФ=√2cosФ.Show that cosФ-sinФ=√2sinФ[Don't spam]
Answers
Answered by
34
HEY! REFER TO THE ATTACHMENT!
HOPE IT HELPS :)
& DO FOLLOW ME FOR MORE HELP!
Attachments:
Answered by
7
Given
✎ cosФ+sinФ=√2cosФ
To show
✎ cosФ-sinФ=√2sinФ
Proof
Let's start with what we have been given :
⇒ cosθ + sinθ = √2cosθ
⇒ sinθ = √2cosθ - cosθ
⇒ sinθ = (√2 - 1)cosθ
⇒ (√2 + 1)sinθ = (√2 + 1)(√2 - 1)cosθ [Multiplying (√2 + 1) on both sides]
⇒ √2sinθ + sinθ = [(√2)² - 1]cosθ
⇒ √2sinθ + sinθ = (2 - 1)cosθ
⇒ √2sinθ = cosθ - sinθ
⇒ cosθ - sinθ = √2sinθ [Showed]
∴ LHS = RHS [Showed]
Some more trigonometric identities :
✎ sin²θ + cos²θ = 1
✎ tanθ = sinθ/cosθ
✎ cotθ = cosθ/sinθ
✎ sec²θ - tan²θ = 1
✎ sinθ = 1/cscθ
✎ cosθ = 1/secθ
✎ tanθ = 1/cotθ
Similar questions