Math, asked by Anonymous, 9 months ago

If cosФ+sinФ=√2cosФ.Show that cosФ-sinФ=√2sinФ[Don't spam]

Answers

Answered by EnchantedGirl
34

HEY! REFER TO THE ATTACHMENT!

HOPE IT HELPS :)

& DO FOLLOW ME FOR MORE HELP!

Attachments:
Answered by EliteSoul
7

Given

cosФ+sinФ=√2cosФ

To show

cosФ-sinФ=√2sinФ

Proof

Let's start with what we have been given :

⇒ cosθ + sinθ = √2cosθ

⇒ sinθ = √2cosθ - cosθ

⇒ sinθ = (√2 - 1)cosθ

⇒ (√2 + 1)sinθ = (√2 + 1)(√2 - 1)cosθ [Multiplying (√2 + 1) on both sides]

⇒ √2sinθ + sinθ = [(√2)² - 1]cosθ

⇒ √2sinθ + sinθ = (2 - 1)cosθ

⇒ √2sinθ = cosθ - sinθ

cosθ - sinθ = 2sinθ [Showed]

LHS = RHS [Showed]

Some more trigonometric identities :

sin²θ + cos²θ = 1

tanθ = sinθ/cosθ

cotθ = cosθ/sinθ

sec²θ - tan²θ = 1

sinθ = 1/cscθ

cosθ = 1/secθ

tanθ = 1/cotθ

Similar questions