If
Cos θ + Sin θ= 2Cos θ
then show that
Cos θ - Sin θ=root2Sin θ
Answers
Answered by
2
Answer:
Given,
cosθ+sinθ= √2cosθ
squaring on both the sides, we get,
cos2θ+sin2θ+2sinθcosθ=2cos squareθ
cos2θ−sin2θ=2cosθsinθ
(cosθ+sinθ)(cosθ−sinθ)=2cosθsinθ
√2 cosθ(cosθ−sinθ)=2cosθsinθ [ Given cosθ+sinθ= 2cosθ]
∴cosθ−sinθ= √2sinθ [henceproved]
Answered by
0
Answer:
hk answer is correct
Welldone hk
Similar questions