Math, asked by Lru9bafsannanayanki, 1 year ago

If cosθ + sinθ = root 2 cosθ, show that cosθ sinθ = root 2 sinθ.

Answers

Answered by ARoy
58
cosθ+sinθ=√2cosθ
or, sin
θ=√2cosθ-cosθ
or, sin
θ=cosθ(√2-1)
or, sinθ=cosθ[(√2-1)(√2+1)/(√2+1)]
or, sinθ=cosθ(2-1)/(√2+1)
or, √2sinθ+sinθ=cosθ
or, sin
θ-cosθ=-√2sinθ
or, cos
θ-sinθ=√2sinθ
Answered by shagyy2018
21

cosθ+sinθ=√2cosθ

or, sinθ=√2cosθ-cosθ

or, sinθ=cosθ(√2-1)

or, sinθ=cosθ[(√2-1)(√2+1)/(√2+1)]

or, sinθ=cosθ(2-1)/(√2+1)

or, √2sinθ+sinθ=cosθ

or, sinθ-cosθ=-√2sinθ

or, cosθ-sinθ=√2sinθ

Similar questions