if cos square theta minus sin square theta is equal to tan square alpha then prove that cos square alpha minus sin square alpha is equal to tan square theta
Answers
Answered by
51
Answer:
Proved if Cos²θ - Sin²θ = tan²α then Cos²α - Sin²α = tan²θ
Step-by-step explanation:
if Cos²θ - Sin²θ = tan²α
Then
Cos²α - Sin²α = tan²θ
LHS = Cos²α - Sin²α
= Cos²α(1 - Tan²α)
= (1/Sec²α) (1 - Tan²α)
Sec²α = 1 + Tan²α
= (1/(1 + Tan²α))(1 - Tan²α)
= (1 - Tan²α)/(1 + Tan²α)
putting value of Tan²α
= (1 - (Cos²θ - Sin²θ))/(1 + Cos²θ - Sin²θ)
= (1 - Cos²θ + Sin²θ))/(1 - Sin²θ + Cos²θ)
using 1 - Cos²θ = Sin²θ & 1 - Sin²θ = Cos²θ
= (Sin²θ + Sin²θ))/(Cos²θ + Cos²θ)
= 2Sin²θ/2Cos²θ
= tan²θ
= RHS
Proved
Answered by
19
Answer:
May be this will help you ... It's is of basic trignomentry .......
Attachments:
Similar questions