Math, asked by abutalha3, 1 year ago

If cos theta 1 + cos theta 2 + cos theta 3 = 3 then sin theta 1 + sin theta 2 + sin theta 3 =?

Attachments:

Answers

Answered by Anonymous
6

Answer:

Hope it helps you friend. ✌ ✌ ✌

Attachments:
Answered by smithasijotsl
1

Answer:

sin\theta_1 + sin\theta_2  +  sin\theta_3 = 0

Step-by-step explanation:

Given that

Cos  \theta_1 +Cos  \theta_2 +Cos  \theta_3 =3\\

We know that

-1 \leq Cos \theta \leq 1

Hence the given condition

Cos  \theta_1 +Cos  \theta_2 +Cos  \theta_3 =3

is possible if

Cos  \theta_1 = Cos  \theta_2  = Cos  \theta_3 =1

that is when,

\theta_1 =  \theta_2  =  \theta_3 = {n\pi }

Hence if  \theta_1 =  \theta_2  =  \theta_3 = {n\pi } then,

sin\theta_1 =  sin\theta_2  =  sin\theta_3 = 0

sin\theta_1 + sin\theta_2  +  sin\theta_3 = 0sin\theta_1 + sin\theta_2  +  sin\theta_3 = 0

Hence sin\theta_1 + sin\theta_2  +  sin\theta_3 = 0

Similar questions