Math, asked by vaibhav191174, 6 months ago

If cos theta=(12)/(13) 0<theta<(pi)/(2) then (sin^(2)theta-cos^(2)theta)/(2sin theta cos theta)=
A) -(169)/(120)
B) (169)/(120)
C) -(119)/(120)
D) (119)/(120)​

Answers

Answered by ravi2303kumar
0

Answer:

C. -\frac{119}{120}

Step-by-step explanation:

given cosα = 12/13

=> adj/hyp = 12/13

by pythogorean theorem,

opp = √(hyp²-adj²) = √(13²-12²) = √(169-144)

       = √25 = 5 units

=> sinα = opp/hyp = 5/13

\frac{sin^2\alpha-cos^2\alpha  }{2. sin\alpha. cos\alpha  }  = \frac{(\frac{5}{13} )^2-(\frac{12}{13} )^2}{2.\frac{5}{13}.\frac{12}{13}  }

                     = \frac{\frac{25}{169}-\frac{144}{169}  }{\frac{120}{169}}  = -\frac{144-25}{169} * \frac{169}{120}

                     = -\frac{119}{120}

Similar questions