If cos theta=2x/1+x square,then tan theta
Answers
Answered by
3
Answer:
1 / 2x √[ 1 + 2x - 3x^2 ]
Step-by-step explanation:
We know,
tanθ = height / base = sinθ / cosθ
cosθ = base / hypotenuse
sinθ = height / hypotenuse
sin^2 θ + cos^2 θ = 1
sin^2 θ = 1 - cos^2 θ
From above,
= > tanθ = sinθ / cosθ
= > cosθ = sinθ / tanθ
= > cos^2 θ = sin^2 θ / tan^2 θ { square on both sides }
= > cos^2 θ = ( 1 - cos^2 θ ) / tan^2 θ { from above }
= > tan^2 θ = ( 1 - cos^2 θ ) / cos^2 θ
= > tan^2 θ = [ 1 - { 2x / ( 1 + x ) }^2 ] / [ 2x / ( 1 + x ) ]^2
= > tan^2 θ = { ( 1 + x )^2 - ( 2x )^2 } / 4x^2
= > tan^2 θ = { 1 + x^2 + 2x - 4x^2 } / 4x^2
= > tanθ = 1 / 2x √[ 1 + 2x - 3x^2 ]
Similar questions