Math, asked by anjalimahali643, 9 months ago

If cos theta =5/13 find sin^2theta-cosec^2theta+cot^2theta

Answers

Answered by sandy1816
3

Answer:

your answer attached in the photo

Attachments:
Answered by Anonymous
5

Question :

\sf{If\:cos\:\theta=\frac{5}{13},\:find\:sin^2\:\theta-cosec^2\:\theta+cot^2\:\theta.}

Solution :

\sf{cos\:\theta=\frac{5}{13}}

\implies\sf{cos^2\:\theta=\frac{25}{169}}

We know,

{\boxed{\bold{sin^2\:\theta=1-cos^2\:\theta}}}

So,

\implies\sf{sin^2\:\theta=1-(\frac{5}{13})^2}

\implies\sf{sin^2\:\theta=1-\frac{25}{169}}

\implies\sf{sin^2\:\theta=\frac{144}{169}}

{\boxed{\bold{sin^2\:\theta=\frac{144}{169}}}}

We know,

{\boxed{\bold{cosec^2\:\theta=\dfrac{1}{sin^2\:\theta}}}}

So,

\implies\sf{cosec^2\:\theta=\frac{169}{144}}

We know,

{\boxed{\bold{cot^2\:\theta=\dfrac{cos^2\:\theta}{sin^2\:\theta}}}}

So,

\implies\sf{cot^2\:\theta=\frac{25}{169}\times\:\frac{169}{144}}

\implies\sf{cot^2\:\theta=\frac{25}{144}}

Now find the value of sin²∅ - cosec²∅ + cot²∅

\sf{sin^2\:\theta-cosec^2\:\theta+cot^2\:\theta}

\implies\sf{\frac{144}{169}-\frac{169}{144}+\frac{25}{144}}

\implies\sf{\frac{144}{169}-(\frac{169}{144}-\frac{25}{144})}

\implies\sf{\frac{144}{169}-\frac{144}{144}}

\implies\sf{\frac{144}{169}-1}

\implies\sf{\frac{144-169}{169}}

\implies\sf{\frac{-25}{169}\:\:[Answer]}

________________________

Formulas related to trigonometry :-

• sin²A + cos²A =1

• 1 + tan²A = sec²A

• 1 + cot²A = cosec²A

__________________________

Similar questions