If cos theta = b/√a^2+b^2 then prove that
( b+√a^2+b^2/a )=√a^2+b^2 +b/√a^2+ b^2-b = 1+ cos theta/1-cos theta
Answers
Answered by
8
ANSWER.................
As cosθ=cosα−e1−ecosα
cosθ−ecosθcosα=cosα−e
or e(cosθcosα−1)=cosθ−cosα
or 1e=cosθcosα−1cosθ−cosα
an using componendo dividendo
1+e1−e=cosθcosα−1+cosθ−cosαcosθcosα−1−cosθ+cosα
= cosθ(1+cosα)−(1+cosα)cosα(1+cosθ)−(1+cosθ)
= (cosθ−1)(1+cosα)(cosα−1)(1+cosθ)
= 1+cosα1−cosα×1−cosθ1+cosθ
Observe that tan2A=2sin2A2cos2A
= 1−1+2sin2A1+2cos2A−1=1−(1−2sin2A)1+(2cos2A−1)
= 1−cos2A1+cos2A
Hence 1+e1−e=tan2(θ2)tan2(α2)
and tan(θ2)=±√1+e1−etan(α2)
As cosθ=cosα−e1−ecosα
cosθ−ecosθcosα=cosα−e
or e(cosθcosα−1)=cosθ−cosα
or 1e=cosθcosα−1cosθ−cosα
an using componendo dividendo
1+e1−e=cosθcosα−1+cosθ−cosαcosθcosα−1−cosθ+cosα
= cosθ(1+cosα)−(1+cosα)cosα(1+cosθ)−(1+cosθ)
= (cosθ−1)(1+cosα)(cosα−1)(1+cosθ)
= 1+cosα1−cosα×1−cosθ1+cosθ
Observe that tan2A=2sin2A2cos2A
= 1−1+2sin2A1+2cos2A−1=1−(1−2sin2A)1+(2cos2A−1)
= 1−cos2A1+cos2A
Hence 1+e1−e=tan2(θ2)tan2(α2)
and tan(θ2)=±√1+e1−etan(α2)
Answered by
3
Step-by-step explanation:
from abhijeet jamui bihar
Attachments:
Similar questions