Accountancy, asked by KS8835, 1 year ago

if cos theta + sin theta = √2 cos theta, prove that cos theta - sin tgeta = √2 sin theta​

Answers

Answered by satyamrathi47
3

let , your theta be A ,

cosA + sinA = √2cosA

squaring both sides , we get

cos²A + sin²A + 2sinAcosA = 2cos²A

cos²A - 2cos²A + sin²A + 2sinAcosA = 0

-cos²A + sin²A + 2sinAcosA = 0

taking the negative sign common , we get

-(cos²A - sin²A -2sinAcosA ) = 0

cos²A - sin²A -2sinAcosA =0

cos²A -2sinAcosA = sin²A

adding sin²A both sides, we get

cos²A + sin²A - 2sinAcosA = 2sin²A

(cosA - sinA)² = 2sin²A

cosA - sinA = √2sinA

HENCE PROVED !!

OR

cosA + sinA = √2 cosA

sinA = √2 cosA - cos A

sinA = cosA (√2 - 1)

sinA = cosA (√2 - 1)×(√2+1) / (√2 +1)

sinA = cosA / (√2 + 1)

√2sinA + sinA = cosA

cosA - sin A = √2 sinA

HENCE PROVED!!!


KS8835: there is maths final exam tomorrow.....im working on this question since 1 hour...finally you answered it...thanks a lot..it helps me a lot....
satyamrathi47: welcome bro !!! by the way how was your board exam.....??......mine was excellent....
Similar questions