if cos theta + sin theta = √2 cos theta, prove that cos theta - sin tgeta = √2 sin theta
Answers
Answered by
3
let , your theta be A ,
cosA + sinA = √2cosA
squaring both sides , we get
cos²A + sin²A + 2sinAcosA = 2cos²A
cos²A - 2cos²A + sin²A + 2sinAcosA = 0
-cos²A + sin²A + 2sinAcosA = 0
taking the negative sign common , we get
-(cos²A - sin²A -2sinAcosA ) = 0
cos²A - sin²A -2sinAcosA =0
cos²A -2sinAcosA = sin²A
adding sin²A both sides, we get
cos²A + sin²A - 2sinAcosA = 2sin²A
(cosA - sinA)² = 2sin²A
cosA - sinA = √2sinA
HENCE PROVED !!
OR
cosA + sinA = √2 cosA
sinA = √2 cosA - cos A
sinA = cosA (√2 - 1)
sinA = cosA (√2 - 1)×(√2+1) / (√2 +1)
sinA = cosA / (√2 + 1)
√2sinA + sinA = cosA
cosA - sin A = √2 sinA
HENCE PROVED!!!
KS8835:
there is maths final exam tomorrow.....im working on this question since 1 hour...finally you answered it...thanks a lot..it helps me a lot....
Similar questions
Math,
7 months ago
Science,
7 months ago
Computer Science,
1 year ago
Math,
1 year ago
Physics,
1 year ago