If ( cos theta - sin theta ) = √2 sin theta , then show that cos theta + sin theta = √2 cos theta.
Answers
Answered by
25
cosθ-sinθ=√2sinθ
or, cosθ=√2sinθ+sinθ
or, cosθ=sinθ(√2+1)
or, cosθ=sinθ(√2+1)(√2-1)/(√2-1)
or, √2cosθ-cosθ=sinθ{(√2)²-(1)²}
or, √2cosθ-cosθ=sinθ(2-1)
or, -cosθ-sinθ=-√2cosθ
or, cosθ+sinθ=√2cosθ (Proved)
or, cosθ=√2sinθ+sinθ
or, cosθ=sinθ(√2+1)
or, cosθ=sinθ(√2+1)(√2-1)/(√2-1)
or, √2cosθ-cosθ=sinθ{(√2)²-(1)²}
or, √2cosθ-cosθ=sinθ(2-1)
or, -cosθ-sinθ=-√2cosθ
or, cosθ+sinθ=√2cosθ (Proved)
Answered by
0
Answer:
your answer attached in the photo
Attachments:
Similar questions