Math, asked by yadavmahesh955p44rgi, 1 year ago

If cos theta + sin theta = √2cos theta then show that cos theta -sin theta=√2sin theta

Answers

Answered by Jaykrishnavyas
11
hope it will help you mark as brainliest if u find it useful
Attachments:
Answered by silentlover45
3

\underline\mathfrak{Given:-}

  • \: \: \: \: \: \: \: Cos\emptyset \: + \: Sin\emptyset \: \: = \: \: \sqrt{2} \: Cos\emptyset

\underline\mathfrak{Prove \: \: That:-}

  • \: \: \: \: \: \: \: Cos\emptyset \: - \: Sin\emptyset \: \: = \: \: \sqrt{2} \: Sin\emptyset

\underline\mathfrak{Proof:-}

  • \: \: \: \: \: \: \: Cos\emptyset \: + \: Sin\emptyset \: \: = \: \: \sqrt{2} \: Cos\emptyset

\: \: \: \: \: \underline{Squaring \: \: on \: \: both \: \: the \: \: sides, \: \: we \: \: get}

\: \: \: \: \: \leadsto {(Cos\emptyset \: + \: Sin\emptyset)}^{2} \: \: = \: \: {(\sqrt{2} \: Cos\emptyset)}^{2}

\: \: \: \: \: \leadsto {Cos}^{2}\emptyset \: + \: {Sin}^{2}\emptyset \: + \: {2} \: Cos\emptyset \: Sin\emptyset  \: \: = \: \: {2} \: {Cos}^{2}\emptyset

\: \: \: \: \: \therefore {Cos}^{2}\emptyset \: + \: {Sin}^{2}\emptyset \: \: = \: \: {1}

\: \: \: \: \: \leadsto {1} \: + \: {2} \: Cos\emptyset \: Sin\emptyset  \: \: = \: \: {2} \: {Cos}^{2}\emptyset

\: \: \: \: \: \leadsto {2} \: Cos\emptyset \: Sin\emptyset  \: \: = \: \: {2} \: {Cos}^{2}\emptyset \: - \: {1}

\: \: \: \: \: Now,

\: \: \: \: \: \leadsto {(Cos\emptyset \: + \: Sin\emptyset)}^{2} \: \: = \: \: {Cos}^{2}\emptyset \: + \: {Sin}^{2}\emptyset \: - \: {2} \: Cos\emptyset \: Sin\emptyset

\: \: \: \: \: \therefore {Cos}^{2}\emptyset \: + \: {Sin}^{2}\emptyset \: \: = \: \: {1}

\: \: \: \: \: \leadsto {(Cos\emptyset \: + \: Sin\emptyset)}^{2} \: \: = \: \: {1} \: - \: {({Cos}^{2}\emptyset \: - \: {1})}

\: \: \: \: \: \leadsto {(Cos\emptyset \: + \: Sin\emptyset)}^{2} \: \: = \: \: {2} \: - \: {Cos}^{2}\emptyset

\: \: \: \: \: \leadsto {(Cos\emptyset \: + \: Sin\emptyset)}^{2} \: \: = \: \: {2} \: - \: {2} \: {({1} \: - \: {Sin}^{2}\emptyset)}

\: \: \: \: \: \leadsto {(Cos\emptyset \: + \: Sin\emptyset)}^{2} \: \: = \: \: {2} \: - \: {2} \: + \: {{2} \: Sin}^{2}\emptyset

\: \: \: \: \: \leadsto {(Cos\emptyset \: + \: Sin\emptyset)}^{2} \: \: = \: \: {{2} \: Sin}^{2}\emptyset

  • \: \: \: \: \: \: Taking \: \: square \: \: root \: \: on \: \: both \: \: sides, \: \: we \: \: get.

\: \: \: \: \: \: \: Cos\emptyset \: - \: Sin\emptyset \: \: = \: \: \sqrt{2} \: Sin\emptyset

\: \: \: \: \: \: proved.

__________________________________

Similar questions