Math, asked by Guljar3145, 1 day ago

If cos theta=x/y ,then tan theta +4/4 cot thata +1=

Answers

Answered by tennetiraj86
1

Given :-

cos θ = x/y

To find :-

The value of (tan θ + 4 )/(4 cot θ +1)

Solution :-

Given that

cos θ = x/y

=> 1 / cos θ = 1 / (x/y)

=> sec θ = y/x

On squaring both sides then

=> ( sec θ)² = (y/x)²

=> sec² θ = y²/x²

On subtracting 1 from both sides then

=> sec² θ - 1 = (y²/x²) - 1

=> sec² θ - 1 = (y²-x²)/x²

=> tan² θ = (y²-x²)/x²

Since, sec² A - tan² A = 1

=> tan θ = √[(y²-x²)/x²]

=> tan θ = √(y²-x²)/x

=> 1 / tan θ = 1/[√(y²-x²)/x]

=> cot θ = x/√(y²-x²)

Now,

The value of tan θ + 4

= [ √(y²-x²)/x] +4

= [√(y²-x²)+4x]/x

and

The value of 4 cot θ + 1

=> (4/ tan θ)+1

=>

= 4 [ x / √(y²-x²)]+1

=> [4x/√(y²-x²)]+1

=> [4x+√(y²-x²)]/√(y²-x²)

Now,

The value of (tan θ + 4 )/(4 cot θ +1)

= [{√(y²-x²)+4x}/x] / [{4x+√(y²-x²)}/√(y²-x²)]

= [{√(y²-x²)+4x}{√(y²-x²)}] / [x{4x+√(y²-x²)}]

= √(y²-x²)/x

Alternative Method :-

Given that

cos θ = x/y

=> 1 / cos θ = 1 / (x/y)

=> sec θ = y/x

On squaring both sides then

=> ( sec θ)² = (y/x)²

=> sec² θ = y²/x²

On subtracting 1 from both sides then

=> sec² θ - 1 = (y²/x²) - 1

=> sec² θ - 1 = (y²-x²)/x²

=> tan² θ = (y²-x²)/x²

Since, sec² A - tan² A = 1

=> tan θ = √[(y²-x²)/x²]

=> tan θ = √(y²-x²)/x

now ,

4 cot θ +1

=> (4/tan θ)+1

=>( 4+tan θ)/tan θ

Now,

(tan θ + 4 )/(4 cot θ +1)

=> (tan θ + 4 )/[(4+tan θ)/tan θ]

=> (tan θ + 4 ) tan θ/ (4+tan θ)

=> tan θ

Therefore,

(tan θ + 4 )/(4 cot θ +1) = tan θ

=> √(y²-x²)/x

Answer :-

The value of (tan θ + 4 )/(4 cot θ +1) is (-x²)/x

Used formulae:-

★ sec θ = 1 / cos θ

cot θ = 1 / tan θ

sec² A - tan² A = 1

Similar questions