Math, asked by nikkyphotos, 3 months ago

if cos tita is 1/2 find the value of 2 sec tita/1 +tan2 tita​

Answers

Answered by chandbhalodia2005
0

Answer:

I hope my answer will help you.

Attachments:
Answered by Anonymous
4

Given:-

  • Cosθ = 1/2

To Find:-

  • The value of 2secθ/(1 + tan²θ)

Solution:-

From given we have,

Cosθ = 1/2

From trigonometric table we know,

  • Cos60° = 1/2

Therefore,

We can write,

Cosθ = Cos60°

On comparing We get,

θ = 60°

The value of θ = 60°

Now,

We need to find the value of \sf{\dfrac{2sec\theta}{1+tan^2\theta}}

Let us put the value of θ

= \sf{\dfrac{2sec60^\circ}{1+tan^260^\circ}}

From trigonometric table we have,

  • sec60° = 2
  • tan60° = √3

Putting respective value,

= \sf{\dfrac{2\times 2}{1+(\sqrt{3})^2}}

\sf{\dfrac{4}{1+3}}

\sf{\dfrac{4}{4}}

⇒ 1

\sf{The\:value\:of\:\dfrac{2sec\theta}{1+tan\theta} \: is\: 1}

_____________________________________

Trigonometric Table:-

{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

______________________________________

Similar questions