Math, asked by Aairdur5i5yasinthotr, 1 year ago

if cos tita + sin tita = root 2 cos tita, show that cos tita - sin tita = root 2 sin tita

Answers

Answered by mysticd
5

 Given \: cos \theta + sin \theta = \sqrt{2} cos \theta

/* On squaring both sides, we get */

 \implies  (cos \theta + sin \theta)^{2} = ( \sqrt{2}cos \theta )^{2}

 \implies cos^{2} \theta + sin^{2} \theta + 2cos \theta sin \theta = 2cos^{2} \theta

 \implies cos^{2} \theta + sin^{2} \theta- cos^{2}\theta =  - 2cos \theta sin \theta + cos^{2} \theta

 \implies sin^{2} \theta = cos^{2} \theta - 2cos\theta sin \theta

 \implies sin^{2} \theta + sin^{2} \theta = cos^{2} \theta + sin^{2} \theta - 2cos\theta sin \theta

 \implies 2sin^{2} \theta  = (cos \theta - sin \theta )^{2}

/* Do the square root both sides , we get */

 \implies \sqrt{2sin^{2}\theta } = \sqrt{(cos \theta - sin \theta )^{2}}

 \implies \sqrt{2} sin \theta = cos \theta - sin \theta

•••♪

Similar questions