If cos x=-1/3 , x is in 3rd quadrant, find the value of sin(x/2) and cos(X/2).
class 11
Answers
Answered by
19
Answer:
Step-by-step explanation:
Cosx=-1/3
Cosx=2cos^2(x)/2 -1
-1/3=2cos^2(x)/2 -1
1-1/3=2cos^2(x)/2
(3-1)/3=2cos^2(x)/2
2/3=2cos^2(x)/2
1/3=2cos^2(x)/2
1/6=cos^2(x)/2
Cosx/2=1/√6
Cos x=1-2sin^2(x)/2
-1/3=1-2sin^2(x)/2
1/3+1=2sin^2(x)/2
4/3=2sin^2(x)/2
Sinx/2=2/√6
Answered by
0
Answer:
here ans is
Step-by-step explanation:
cosx=−31,π<x<23π
i.e. x lies in 3rd quadrant
Using 1−cosx=2sin22x⇒sin2x=±21−cosx
We get, sin2x=±21−(−31)=±64
As π<x<23π⇒2π<2x<43π and sin is positive in 2nd quadrant
∴sin2x=5
here you're answer mark as brainlist ✍
Similar questions