Math, asked by harsh1404, 1 year ago

if cos x/2=12/13 and x lies in Quadrant I, find the values of
(i) sin x,
(ü) cos x,
(iii) cotx.​

Answers

Answered by MaheswariS
23

Answer:

sinx=\frac{120}{169}

cosx=\frac{119}{169}

cotx=\frac{119}{120}

Step-by-step explanation:

Formula used:

sin^2{A}+cos^2{A}=1

cosA=2\:cos^2\frac{A}{2}-1

Given:

cos\frac{x}{2}=\frac{12}{13}

cos^2\frac{x}{2}+sin^2\frac{x}{2}=1

\frac{144}{169}+sin^2\frac{x}{2}=1

sin^2\frac{x}{2}=1-\frac{144}{169}

sin^2\frac{x}{2}=\frac{169-144}{169}

sin^2\frac{x}{2}=\frac{25}{169}

sin\frac{x}{2}=\frac{5}{13}          ( x/2 lies in I quadrant)

cosx=2\:cos^2\frac{x}{2}-1

cosx=2(\frac{12}{13})^2-1

cosx=2(\frac{144}{169})-1

cosx=\frac{288}{169}-1

cosx=\frac{288-169}{169}

cosx=\frac{119}{169}

sinx=2\:sin\frac{x}{2}\:cos\frac{x}{2}

sinx=2(\frac{5}{13})(\frac{12}{13})

sinx=\frac{120}{169}

cotx=\frac{cosx}{sinx}

cotx=\frac{\frac{119}{169}}{\frac{120}{169}}

cotx=\frac{119}{120}

Answered by rishika79
7

See the attachment alls are mentioned there .

hope its help u . . . . .

Attachments:
Similar questions