Math, asked by KrishnaMandal7095, 9 months ago

If cos X=a/b, then sin X is equal to
A. b2-a2/b
B. b-a/b C. √(b2-a2)/b
D. √(b-a)/b

Answers

Answered by dilliprasaddhakal528
80

C.

Step-by-step explanation:

sinx =  \sqrt{1 -  {cos}^{2}x }  \\  =  \sqrt{1 -  {( \frac{a}{b} })^{2} }  \\  =  \sqrt{ \frac{ {b}^{2}  -  {a}^{2} }{ {b}^{2} } }  \\  =  \frac{ \sqrt{ {b}^{2}  -  {a}^{2} } }{b}

Answered by pulakmath007
6

SOLUTION

GIVEN

\displaystyle \sf{ \cos X =  \frac{a}{b} }

TO DETERMINE

The value of sin X

EVALUATION

\displaystyle \sf{ \cos X =  \frac{a}{b} }

Squaring both sides we get

\displaystyle \sf{ {\cos}^{2}  X =  \frac{ {a}^{2} }{ {b}^{2} } }

\displaystyle \sf{ \implies \:  -  {\cos}^{2}  X =  -  \frac{ {a}^{2} }{ {b}^{2} } }

\displaystyle \sf{ \implies \:  1-  {\cos}^{2}  X =1  -  \frac{ {a}^{2} }{ {b}^{2} } }

\displaystyle \sf{ \implies \:  {\sin}^{2}  X = \frac{ {b}^{2} -   {a}^{2} }{ {b}^{2} } }

\displaystyle \sf{ \implies \:  {\sin}^{}  X =  \sqrt{ \frac{ {b}^{2} -   {a}^{2} }{ {b}^{2} } }}

\displaystyle \sf{ \implies \:  {\sin}^{}  X =   \frac{  \sqrt{{b}^{2} -   {a}^{2} }}{ {b}^{} } }

FINAL ANSWER

\displaystyle \sf{  {\sin}^{}  X =   \frac{  \sqrt{{b}^{2} -   {a}^{2} }}{ {b}^{} } }

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Similar questions