Math, asked by vaishvaishnav3822, 1 year ago

if cos x + cos y =4/5 and cos x-cos y =2/7. find the values of 14 tan x-y/2 + 5 cot x+y/2.

Answers

Answered by srilukolluru
76
i think it will help you mark as a brainliest answer. . . . .
Attachments:
Answered by pinquancaro
72

Answer:

14\tan\frac{x-y}{2}+5\cot\frac{x+y}{2}=0

Step-by-step explanation:

Given : If \cos x+\cos y=\frac{4}{5}  and \cos x-\cos y=\frac{2}{7}  

To find : The value of 14\tan(\frac{x-y}{2})+5\cot\frac{x+y}{2}?

Solution :

If \cos x+\cos y=\frac{4}{5}  and \cos x-\cos y=\frac{2}{7}  

Applying trigonometric identities,

\cos x+\cos y=2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})

\frac{4}{5}=2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2}) .....(1)

\cos x-\cos y=-2\sin(\frac{x-y}{2})\sin(\frac{x+y}{2})

\frac{2}{7}=-2\sin(\frac{x-y}{2})\sin(\frac{x+y}{2}) .....(2)

Divide (1) and (2),

\frac{2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})}{-2\sin(\frac{x-y}{2})\sin(\frac{x+y}{2})}=\frac{\frac{4}{5}}{\frac{2}{7}}

-\frac{\cot\frac{x+y}{2}}{\tan\frac{x-y}{2}}=\frac{14}{5}

-5\cot\frac{x+y}{2}=14\tan\frac{x-y}{2}

14\tan\frac{x-y}{2}+5\cot\frac{x+y}{2}=0

Therefore, The value of the expression is 14\tan\frac{x-y}{2}+5\cot\frac{x+y}{2}=0

Similar questions