Math, asked by gsgsgsgshhhh4823, 9 months ago

If cos x+cos y=a and sin x+sin y=b then show that sin 2x+sin 2y=2ab(1-2/a^2+b^2)

Answers

Answered by swapna4879
0

Answer:

Given that,

cos

x

+

c

o

y

=

a

....[1]

sin

x

+

sin

y

=

b

....[2]

Squaring and adding [1] and [2], we get,

cos

2

x

+

2

cos

x

cos

y

+

cos

2

y

+

sin

2

x

+

2

sin

x

sin

y

+

sin

2

y

=

a

2

+

b

2

2

+

2

(

cos

x

cos

y

+

sin

x

sin

y

)

=

a

2

+

b

2

2

(

1

+

cos

(

x

y

)

)

=

a

2

+

b

2

cos

(

x

y

)

=

a

2

+

b

2

2

1

Dividing equation [1] by [2], we get,

cos

x

+

cos

y

sin

x

+

sin

y

=

a

b

2

cos

(

x

+

y

2

)

cos

(

x

y

2

)

2

sin

(

x

+

y

2

)

cos

(

x

y

2

)

=

a

b

cot

(

x

+

y

2

)

=

a

b

tan

(

x

+

y

2

)

=

b

a

x

+

y

2

=

tan

1

(

b

a

)

x

+

y

=

2

tan

1

(

b

a

)

As,

2

tan

1

x

=

sin

1

(

2

x

1

+

x

2

)

,we have,

x

+

y

=

sin

1

2

(

b

a

)

1

+

(

b

a

)

2

=

sin

1

(

2

a

b

a

2

+

b

2

)

sin

(

x

+

y

)

=

2

a

b

a

2

+

b

2

Now,

L

H

S

=

sin

2

x

+

sin

2

y

=

2

sin

(

x

+

y

)

cos

(

x

y

)

=

2

[

2

a

b

a

2

+

b

2

]

[

a

2

+

b

2

2

1

]

=

2

a

b

[

2

a

2

+

b

2

a

2

+

b

2

2

2

a

2

+

b

2

]

=

2

a

b

[

1

2

a

2

+

b

2

]

=

R

H

S

Step-by-step explanation:

i don't know whether the answer is right or wrong if it is right make me brainliest

Similar questions