Math, asked by ahmedimaad99, 10 months ago

If (cos0 + sin0) =√2sin0, prove that (sin0 - cos0) = √2cos0.​

Answers

Answered by debadutta14n
2

proved! xyztrigonometryxyz

Attachments:
Answered by harendrachoubay
1

\sin \theta-\cos \theta=\sqrt{2} \cos \theta, proved.

Step-by-step explanation:

We have,

\cos \theta + \sin \theta  =\sqrt{2}\sin \theta            ............ (1)

Let \sin \theta-\cos \theta=x                 ............ (2)

To prove that, \sin \theta-\cos \theta=\sqrt{2} \cos \theta.  

Squaring and adding (1) and (2), we get

(\cos \theta + \sin \theta)^2+(\sin \theta-\cos \theta)^2=(\sqrt{2}\sin \theta)^2+x^2

(\cos^2 \theta + \sin^2  \theta+2\sin \theta\cos \theta)+(\cos^2 \theta + \sin^2  \theta-2\sin \theta\cos \theta)=2\sin^2 \theta+x^2

\cos^2 \theta + \sin^2  \theta+\cos^2 \theta + \sin^2  \theta=2\sin^2 \theta+x^2

2(\cos^2 \theta + \sin^2  \theta)=2\sin^2 \theta+x^2

Using the algebraic identity,

\cos^2 A + \sin^2 A =1

2(1)=2\sin^2 \theta+x^2

2=2\sin^2 \theta+x^2

x^2=2-2\sin^2 \theta

x^2=2(1-\sin^2 \theta)

x^2=2\cos^2 \theta

⇒ x = \sqrt{2} \cos \theta

\sin \theta-\cos \theta=\sqrt{2} \cos \theta, proved.

Thus, \sin \theta-\cos \theta=\sqrt{2} \cos \theta, proved.

Similar questions