IF cos2A-sin2b=tan2A prove that cos2A-sin2A=tan2b
Answers
Answered by
117
you did mistake in typing question is
cos²A - sin²A = tan²B , then prove , cos²B - sin²B = tan²A
Given, cos²A - sin²A = tan²B
⇒cos²A - ( 1 - cos²A ) = tan²B [∵ sin²Ф = 1 - cos²Ф ]
⇒ cos²A - 1 + cos²A = tan²B
⇒ 2cos²A - 1 = tan²B
⇒ 2cos²A = 1 + tan²B
⇒ 2cos²A = sec²B [ ∵ sec²Ф = 1 + tan²Ф ]
⇒2cos²A.cos²B =1 [ ∵ secФ = 1/cosФ ]
⇒2cos²B = sec²A
= cos²B + cos²B = 1 + tan²A
⇒ cos²B + cos²B - 1 = tan²A
⇒cos²B - (1 - cos²B) = tan²A
⇒ cos²B - sin²B = tan²A
Hence proved//
cos²A - sin²A = tan²B , then prove , cos²B - sin²B = tan²A
Given, cos²A - sin²A = tan²B
⇒cos²A - ( 1 - cos²A ) = tan²B [∵ sin²Ф = 1 - cos²Ф ]
⇒ cos²A - 1 + cos²A = tan²B
⇒ 2cos²A - 1 = tan²B
⇒ 2cos²A = 1 + tan²B
⇒ 2cos²A = sec²B [ ∵ sec²Ф = 1 + tan²Ф ]
⇒2cos²A.cos²B =1 [ ∵ secФ = 1/cosФ ]
⇒2cos²B = sec²A
= cos²B + cos²B = 1 + tan²A
⇒ cos²B + cos²B - 1 = tan²A
⇒cos²B - (1 - cos²B) = tan²A
⇒ cos²B - sin²B = tan²A
Hence proved//
Answered by
4
Step-by-step explanation:
hope this helps plz mark as brainlist
Attachments:
Similar questions