If CosA = 2/5 find the value of tan A + cot A
Answers
Answered by
22
Heya mate, Here is ur answer
Cos A =2/5
Cos^2 A= (2/5)^2
=4/25
We know that
Sin^2 A= 1-cos^2 A
sin^2 A=1-4/25
Sin^2 A=25-4/25
Sin^2 A= 21 /25
Sin A=√21/√25
Sin A =√21/5
Now Tan A = Sin A/cos A
Cot A= Cos A+Sin A
So, Tan A+Cot A
Warm regards
@Laughterqueen
Be Brainly ✌✌✌
Cos A =2/5
Cos^2 A= (2/5)^2
=4/25
We know that
Sin^2 A= 1-cos^2 A
sin^2 A=1-4/25
Sin^2 A=25-4/25
Sin^2 A= 21 /25
Sin A=√21/√25
Sin A =√21/5
Now Tan A = Sin A/cos A
Cot A= Cos A+Sin A
So, Tan A+Cot A
Warm regards
@Laughterqueen
Be Brainly ✌✌✌
boss1975:
Thank you
Answered by
0
tan A=sinA/CosA
value of Cot A=cosA/SinA
then
value of tanA+cotA
sinA/cosA+cosA/sinA
then
tanA=BC/AB
BUT COSA=AB/AC
AB=2
AB=5
BC=Square root 21
then tanA+cotA=
then answer is 25/2×square root21
value of Cot A=cosA/SinA
then
value of tanA+cotA
sinA/cosA+cosA/sinA
then
tanA=BC/AB
BUT COSA=AB/AC
AB=2
AB=5
BC=Square root 21
then tanA+cotA=
then answer is 25/2×square root21
Similar questions