Math, asked by boss1975, 1 year ago

If CosA = 2/5 find the value of tan A + cot A

Answers

Answered by SillySam
22
Heya mate, Here is ur answer

Cos A =2/5

Cos^2 A= (2/5)^2

=4/25

We know that

Sin^2 A= 1-cos^2 A

sin^2 A=1-4/25

Sin^2 A=25-4/25

Sin^2 A= 21 /25

Sin A=√21/√25

Sin A =√21/5

Now Tan A = Sin A/cos A

Cot A= Cos A+Sin A

So, Tan A+Cot A

 =  \frac{sin \: a}{cos \: a}  +  \frac{cos \: a}{sin \: a}


 =  \frac{sin {}^{2}a + cos {}^{2} a }{sin \: a \:  \times cos \: a}


 =  \frac{1}{  \frac{ \sqrt{21} }{5}  \times  \frac{5}{ \sqrt{21} } }


 =  \frac{1}{1}


 = 1


Warm regards

@Laughterqueen

Be Brainly ✌✌✌

boss1975: Thank you
SillySam: my pleasure ☺
Answered by prashanth1551
0
tan A=sinA/CosA
value of Cot A=cosA/SinA
then
value of tanA+cotA
sinA/cosA+cosA/sinA
then
tanA=BC/AB
BUT COSA=AB/AC
AB=2
AB=5
BC=Square root 21
then tanA+cotA=
 \sqrt{21}
then answer is 25/2×square root21
Similar questions