If cosA=2/5, then find the value of 4+4 tan2A
Answers
Answered by
4
CosA=2/5=Base/Hypotenuse
By Pythagoras theorum
H^2= P^2+B^2
5^2=P^2+2^2
25=P^2+4
25-4=P^2
P^2=21
P=sqrt{(21)}
TanA= Prepependicular /Base =sqrt{(21)}/2
4+4tan2A
=4+4sqrt (sqrt{(21)}/2)
=4+4*21/4. [4 will divide 4]
=4+21
=25
Therefore 4+4tan2A=25
Mark it as brainly
By Pythagoras theorum
H^2= P^2+B^2
5^2=P^2+2^2
25=P^2+4
25-4=P^2
P^2=21
P=sqrt{(21)}
TanA= Prepependicular /Base =sqrt{(21)}/2
4+4tan2A
=4+4sqrt (sqrt{(21)}/2)
=4+4*21/4. [4 will divide 4]
=4+21
=25
Therefore 4+4tan2A=25
Mark it as brainly
Similar questions