Math, asked by sanguptahabaj, 1 year ago

If cosA= 3/5 , find 9 cot^2 A-1.

Answers

Answered by ShivajiK
107
cosA = 3/5
sinA = 4/5
cotA = 3/4
9 cot²A – 1 = 9(3/4)² – 1 = 9×9/16 – 1 = 65/16
Answered by mysticd
22

Answer:

9cot^{2}A-1=\frac{65}{16}

Step-by-step explanation:

We \:have ,\: \\cosA=\frac{3}{5}--(1)

\* We know the Trigonometric identity:

sin²A = 1-cos²A *\

\implies sin^{2}A\\=1-(\frac{3}{5})^{2}\\=1-\frac{9}{25}\\=\frac{25-9}{25}\\=\frac{16}{25}--(2)

Now,

9cot^{2}A-1\\=9\big(\frac{cos^{2}A}{sin^{2}A}\big)-1\\=9\big(\frac{\frac{9}{25}}{\frac{16}{25}}\big)-1

/* from (1)&(2)*\

=9\times \frac{9}{16}-1

=\frac{81}{16}-1\\=\frac{81-16}{16}\\=\frac{65}{16}

Therefore,

9cot^{2}A-1=\frac{65}{16}

•••♪

Similar questions