Math, asked by Sammmmmyyy6771, 11 months ago

If cosa =3/5 find the value of 5coseca-4tana/seca+cota

Answers

Answered by Swarup1998
2

Given: cosA=\frac{3}{5}

To find:

The value of \frac{5cosecA-4tanA}{secA+cotA}

Step-by-step explanation:

Here, cosA=\frac{3}{5}

Then sinA=\frac{\sqrt{25-9}}{5}=\frac{\sqrt{16}}{5}=\frac{4}{5}

Thus tanA=\frac{sinA}{cosA}=\frac{4}{3}

\therefore \frac{5cosecA-4tanA}{secA+cotA}

=\dfrac{\frac{5}{sinA}-4tanA}{\frac{1}{cosA}+\frac{1}{tanA}}

=\dfrac{\frac{5}{\frac{4}{5}}-4\frac{4}{3}}{\frac{1}{\frac{3}{5}}+\frac{1}{\frac{4}{3}}}

=\dfrac{\frac{25}{4}-\frac{16}{3}}{\frac{5}{3}+\frac{3}{4}}

=\frac{75-64}{20+9}

=\frac{11}{29}

Answer:

The value of \frac{5cosecA-4tanA}{secA+cotA} is \frac{11}{29}.

Read more on Brainly.in

Prove the Identity.

- https://brainly.in/question/8491190

Similar questions