Math, asked by dondiksha966, 8 months ago

if cosA = 3 sinA prove that sec^2 - sin^2 /tan^2 =cosec^2 -cos^2

Answers

Answered by BrainlyPopularman
11

GIVEN :–

• Cos(A) = 3 Sin(A)

TO PROVE :–

 \\ \implies \bf  \dfrac{ { \sec}^{2}A -  { \sin}^{2}A}{ { \tan}^{2} A}  = cosec ^{2} (A) -  { \cos}^{2} A \\

SOLUTION :–

 \\ \implies \bf  \cos(A) = 3 \sin(A)  \\

• We know that –

 \\ \implies \bf  \cos^{2} (A) +  \sin ^{2} (A)  = 1 \\

 \\ \implies \bf  \sqrt{1 -  \ { \sin}^{2} (A) }= 3 \sin(A)  \\

• Square on both sides –

 \\ \implies \bf  {1 -  \ { \sin}^{2} (A) }= 9 \sin ^{2} (A)  \\

 \\ \implies \bf 1= 10\sin ^{2} (A)  \\

 \\ \implies \bf \sin ^{2} (A)  =  \dfrac{1}{10}  \\

 \\ \implies \bf \sin(A)  =  \dfrac{1}{ \sqrt{10} }  \\

• And –

 \\ \implies \bf  \cos(A) = \dfrac{3}{ \sqrt{10} }   \\

• And –

 \\ \implies \bf  \tan(A) =  \dfrac{ \sin(A) }{ \cos(A) }= \dfrac{1}{3}   \\

• Now let's take L.H.S. –

 \\ \: = \: \bf  \dfrac{ { \sec}^{2}A -  { \sin}^{2}A}{ { \tan}^{2} A} \\

• We should write this as –

 \\ \: = \: \bf  \dfrac{ \dfrac{1}{{ \cos}^{2}A}-  { \sin}^{2}A}{ { \tan}^{2} A} \\

• Now put the values –

 \\ \: = \: \bf  \dfrac{ \dfrac{1}{ \left(\dfrac{3}{10} \right) }-\left(\dfrac{1}{10} \right)}{\left(\dfrac{1}{9} \right)} \\

 \\ \: = \: \bf  \dfrac{ \left(\dfrac{10}{3} \right) -\left(\dfrac{1}{10} \right)}{\left(\dfrac{1}{9} \right)} \\

 \\ \: = \: \bf  \dfrac{ \left(\dfrac{100 - 3}{3 \times 10} \right)}{\left(\dfrac{1}{9} \right)} \\

 \\ \: = \: \bf  \dfrac{ \left(\dfrac{97}{10} \right)}{\left(\dfrac{1}{3} \right)} \\

 \\ \: = \: \bf  \dfrac{97}{10} \\

• Now Let's take R.H.S. –

 \\ \bf = \dfrac{1}{ \sin^{2} (A)} -  { \cos}^{2} A \\

 \\ \bf = \dfrac{1}{ \left( \dfrac{1}{10}  \right)} -  \dfrac{3}{10}  \\

 \\ \bf = 10-  \dfrac{3}{10}  \\

 \\ \bf = \dfrac{100 - 3}{10}  \\

 \\ \bf = \dfrac{97}{10}  \\

\\ \to \bf L.H.S.  = R.H.S. \\

 \bf \bf Hence\:\: Proved

Similar questions