If cosA + cos square A =1 then the value of sin square A + sin power 4 A =
Answers
Answered by
11
Answer:
1
Step-by-step explanation:
Given---> CosA + Cos²A = 1
To find ---> Sin²A + Sin⁴A = ?
Solution---> ATQ ,
CosA + Cos²A = 1
=> CosA = 1 - Cos²A
Putting , 1 = Sin²A + Cos²A , We get
=> CosA = Sin²A + Cos²A - Cos²A
=> CosA = Sin²A
Now, returning to original problem
Sin²A + Sin⁴A = ( Sin²A ) + ( sin²A )²
= CosA + ( CosA )²
= CosA + Cos²A
Putting , CosA + Cos²A = 1 , we get
Sin²A + Sin⁴A = 1
Additional information--->
(1) 1 + tan²θ = Sec²θ
(2) tan²θ = Sec²θ - 1
(3) Sec²θ - tan²θ = 1
(4) 1 + Cot²θ = Cosec²θ
(5) Cot²θ = Cosec²θ - 1
(6) Cosec²θ - cot²θ = 1
Answered by
4
1
#answerwithquality #bal
Similar questions